MIDSEMESTRAL

Algebraic Number Theory

Instructor: Ramdin Mawia	Marks: 30	Time: February 20, 2025; 10:00-13:00.

Attempt FOUR problems. The maximum you can score is 30. Be brief but complete; you may use results proved in class or problem sessions, unless you are asked to prove the result itself. Clearly mention the results you use.

- 1. Prove that the polynomial $f(X) = X^3 + 5X + 9 \in \mathbb{Z}[X]$ is irreducible. Let $\alpha \in \mathbb{C}$ be a root of f(X) and let $K = \mathbb{Q}[\alpha]$. Prove that the ring of integers in K is $\mathbb{Z}[\alpha]$ and find the factorisations (into prime ideals) of 2, 3 and 5 in $\mathbb{Z}[\alpha]$.
- 2. Let $K = \mathbb{Q}[\sqrt{d}]$ be a quadratic field, with $d \in \mathbb{Z}$ squarefree. Find the ring of integers \mathcal{O}_K 8 in K and prove that an odd prime $p \nmid d$ is inert in \mathcal{O}_K if and only if d is not a square mod p.

OR

- 2' Let $K \subset \mathbb{C}$ be a cubic field, i.e., $[K : \mathbb{Q}] = 3$. Prove that $K = \mathbb{Q}[\alpha]$ for some $\alpha \in \mathbb{C}$ with minimal polynomial $f(X) = X^3 + aX + b \in \mathbb{Z}[X]$. Suppose there is a prime p such that K is contained in $\mathbb{Q}[\omega]$ for some primitive pth root ω of unity. Show that all roots of f(X) must be real.
- 3. Let A be a DVR with field of fractions F. Let K be a finite separable extension of F and **8** B be the integral closure of A in K. Prove that B is a PID.
- 4. Prove that every ideal in a Dedekind domain is generated by at most two elements. 8
- 5. State whether the following statements are true or false, with complete justifications: 8
 - i. Let p be an odd prime and $\omega \in \mathbb{C}$ be a primitive pth root of 1. Then the field $\mathbb{Q}[\sqrt{\varepsilon_p p}]$ with $\varepsilon_p = (-1)^{(p-1)/2}$ is the unique quadratic field contained in $\mathbb{Q}[\omega]$.
 - ii. The polynomial $p(X) = X^3 + 2X + 7 \in \mathbb{Z}[X]$ is irreducible and for any root $\alpha \in \mathbb{C}$ of p(X), the ring of integers in $\mathbb{Q}[\alpha]$ is $\mathbb{Z}[\alpha]$.
- 6. Let K/F be a finite Galois extension of number fields with A = O_F, B = O_K. Given a prime p of A, prove that Gal(K/F) acts transitively on the primes of B lying above p. Derive that the fundamental identity then takes the form efg = [K : F].
- 7.¹ Let A ⊂ B be integral domains such that B is integral over A. For any prime ideal p of A, 10 prove that pB ≠ B and that there is at least one prime ideal 𝔅 of B such that 𝔅 ∩ A = 𝔅. Also prove that in this situation, 𝔅 is maximal if and only if 𝔅 is.

 $^{{}^{\}rm I}\!\!{\rm This}$ has an extra 2 marks as bonus.